31 research outputs found

    OxfordVGG Submission to the EGO4D AV Transcription Challenge

    Full text link
    This report presents the technical details of our submission on the EGO4D Audio-Visual (AV) Automatic Speech Recognition Challenge 2023 from the OxfordVGG team. We present WhisperX, a system for efficient speech transcription of long-form audio with word-level time alignment, along with two text normalisers which are publicly available. Our final submission obtained 56.0% of the Word Error Rate (WER) on the challenge test set, ranked 1st on the leaderboard. All baseline codes and models are available on https://github.com/m-bain/whisperX.Comment: Technical Repor

    WhisperX: Time-Accurate Speech Transcription of Long-Form Audio

    Full text link
    Large-scale, weakly-supervised speech recognition models, such as Whisper, have demonstrated impressive results on speech recognition across domains and languages. However, their application to long audio transcription via buffered or sliding window approaches is prone to drifting, hallucination & repetition; and prohibits batched transcription due to their sequential nature. Further, timestamps corresponding each utterance are prone to inaccuracies and word-level timestamps are not available out-of-the-box. To overcome these challenges, we present WhisperX, a time-accurate speech recognition system with word-level timestamps utilising voice activity detection and forced phoneme alignment. In doing so, we demonstrate state-of-the-art performance on long-form transcription and word segmentation benchmarks. Additionally, we show that pre-segmenting audio with our proposed VAD Cut & Merge strategy improves transcription quality and enables a twelve-fold transcription speedup via batched inference.Comment: Accepted to INTERSPEECH 202

    With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition

    Get PDF
    In egocentric videos, actions occur in quick succession. We capitalise on the action's temporal context and propose a method that learns to attend to surrounding actions in order to improve recognition performance. To incorporate the temporal context, we propose a transformer-based multimodal model that ingests video and audio as input modalities, with an explicit language model providing action sequence context to enhance the predictions. We test our approach on EPIC-KITCHENS and EGTEA datasets reporting state-of-the-art performance. Our ablations showcase the advantage of utilising temporal context as well as incorporating audio input modality and language model to rescore predictions. Code and models at: https://github.com/ekazakos/MTCN.Comment: Accepted at BMVC 202

    Spot the conversation: speaker diarisation in the wild

    Full text link
    The goal of this paper is speaker diarisation of videos collected 'in the wild'. We make three key contributions. First, we propose an automatic audio-visual diarisation method for YouTube videos. Our method consists of active speaker detection using audio-visual methods and speaker verification using self-enrolled speaker models. Second, we integrate our method into a semi-automatic dataset creation pipeline which significantly reduces the number of hours required to annotate videos with diarisation labels. Finally, we use this pipeline to create a large-scale diarisation dataset called VoxConverse, collected from 'in the wild' videos, which we will release publicly to the research community. Our dataset consists of overlapping speech, a large and diverse speaker pool, and challenging background conditions.Comment: The dataset will be available for download from http://www.robots.ox.ac.uk/~vgg/data/voxceleb/voxconverse.html . The development set will be released in July 2020, and the test set will be released in October 202

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore